The most up-to-date list of publications can be found on my Google Scholar page. My extended CV is here.
Thesis
Articles
Intrinsically Motivated Open-Ended Learning
- Pourcel, J., Colas, C., Oudeyer, P-Y. & Teodorescu, L. (2023).
ACES: Generating Diverse Programming Puzzles with Autotelic Language Models and Semantic Descriptors (preprint).
- Du, Y., Watkins, O., Wang, Z., Colas, C., Darrell, T., Abbeel, P., Gupta, A. & Andreas, J. (2023).
Guiding Pretraining in Reinforcement Learning with Large Language Models. ICML 2023.
- Colas, C., Teodorescu, L., Oudeyer, P.-Y., Xingdi Y. & Côté M-A. (2023).
Augmenting Autotelic Agents with Large Language Models. CoLLAs 2023.
- Akakzia, A., Serris, O., Sigaud, 0. & Colas, C. (2022).
Help Me Explore: Minimal Social Interventions for Graph-Based Autotelic Agents (preprint). [Code].
- Akakzia A., Colas, C., Oudeyer, P-Y., Chetouani, M. & Sigaud, O. (2020).
Grounding Language to Autonomously-Acquired Skills via Goal Generation (ICLR 2021). [Code].
- Colas, C., Karch, T., Lair, N., Dussoux, J. M., Moulin-Frier, C., Dominey, P. F., & Oudeyer, P. Y. (2020).
Language as a Cognitive Tool to Imagine Goals in Curiosity-Driven Exploration (NeurIPS 2020). [Talk] [Code].
- Lair, N., Colas, C., Portelas, R., Dussoux, J. M., Dominey, P. F., & Oudeyer, P. Y. (2019).
Language Grounding through Social Interactions and Curiosity-Driven Multi-Goal Learning. (Visually Grounded Interaction and Language NeurIPS workshop, 2019).
- Portelas, R., Colas, C., Hofmann, K., & Oudeyer, P. Y. (2019).
Teacher Algorithms for Curriculum Learning of Deep RL in Continuously Parameterized Environments. (CoRL 2019). [Code].
- Colas, C., Sigaud, O., Oudeyer, P. Y. (2018).
CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning. (ICML 2019). [Video] [Talk] [Code].
- Fournier, Colas, C., Chetouani, M., & P., Sigaud, O. (2019).
CLIC: Curriculum Learning and Imitation for feature Control in non-rewarding environments (IEEE Transactions on Cognitive and Developmental Systems).
- Colas, C., Sigaud, O., Oudeyer, P.. (2018).
GEP-PG: Decoupling Exploration and Exploitation in Deep Reinforcement Learning Algorithms (ICML 2018). [Talk] [Code].
Perspectives and Reviews
- Sigaud, O., Baldassarre, G., Colas, C., Doncieux, S., Duro, R., Oudeyer, P-Y., Perrin-Gilbert, N.& Santucci, V.G. (2023).
A Definition of Open-Ended Learning Problems for Goal-Conditioned Agents (preprint).
- Sigaud, O., Caselles-Dupré, H., Colas, C., Akakzia A., Oudeyer, P-Y. & Chetouani, M. (2021).
Towards Teachable Autotelic Agents (IEEE Transactions on Cognitive and Developmental Systems).
- Colas, C., Karch, T., Moulin-Frier, C. & Oudeyer, P. Y. (2022).
Language and Culture Internalization for Human-Like AI (Nature Machine Intelligence). [Slides].
- Colas, C., Karch, T., Sigaud, O. & Oudeyer, P-Y. (2021).
Autotelic Agents with Intrinsically Motivated Goal-Conditioned Reinforcement Learning: a Short Survey (Journal of AI Research).
- Portelas, R., Colas, C., Weng, L., Hofmann, K., Oudeyer, P. Y. (2020).
Automatic Curriculum Learning For Deep RL: A Short Survey (IJCAI 2020). [Talk].
Optimization and Epidemiology
- Colas, C., Hejblum, B., Rouillon, S., Thiébaut, R., Oudeyer, P-Y., Moulin-Frier, C. & Prague, M. (2020).
EpidemiOptim: A Toolbox for the Optimization of Control Policies in Epidemiological Models (Journal of AI Research). [Slides] [Demo] [Code].
Evolutionary Computation
- Pourcel, J., Colas, C., Oudeyer, P-Y. & Teodorescu, L. (2023).
ACES: Generating Diverse Programming Puzzles with Autotelic Language Models and Semantic Descriptors (preprint).
- Colas, C., Huizinga, J., Madhavan, V., & Clune, J. (2020).
Scaling MAP-Elites to Deep Neuroevolution (GECCO 2020). [Slides] [Talk] [Code].
Misc AI
- Kovac, G., Sawayama, M., Portelas, R., Colas, C., Dominey, P.F. & Oudeyer, P-Y (2023).
Large Language Models as a Superpositions of Cultural Perspectives (preprint).
Statistics for RL
- Colas, C., Sigaud, O., Oudeyer, P-Y. (2019).
A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms (preprint). [Code].
- Colas, C., Sigaud, O., Oudeyer, P-Y. (2018).
How Many Random Seeds? Statistical Power Analysis in Deep Reinforcement Learning Experiments. (preprint).
Brain-Computer Interfaces
Digital Art